Metallica
Bearings, Inc., is a young start-up company. No dividends will be paid
on the stock over the next eleven years, because the firm needs to plow
back its earnings to fuel growth. The company will then pay a dividend
of $15.00 per share 12 years from today and will increase the dividend
by 5.50 percent per year thereafter.
Required: |
If the required return on this stock is 13.50 percent, what is the current share price? (Do not round intermediate calculations. Round your answer to 2 decimal places (e.g., 32.16).)
|
Current share price | $ |
Explanation:
Here,
we have a stock that pays no dividends for eleven years. Once the stock
begins paying dividends, it will have a constant growth rate of
dividends. We can use the constant growth model at that point. It is
important to remember the general constant dividend growth formula is:
|
Pt = [Dt × (1 + g)] / (R – g) |
This
means that since we will use the dividend in Year 12, we will be
finding the stock price in Year 11. The dividend growth model is similar
to the present value of an annuity and the present value of a
perpetuity: The equation gives you the present value one period before
the first payment. So, the price of the stock in Year 11 will be:
|
P11 = D12 / (R – g) |
P11 = $15.00 / (.1350 – .0550) |
P11 = $187.50 |
The
price of the stock today is simply the PV of the stock price in the
future. We simply discount the future stock price at the required
return. The price of the stock today will be:
|
P0 = $187.50 / 1.135011 |
P0 = $46.56 |
No comments:
Post a Comment